

Docker for Dummies

Nick Leghorn
Manager of Security Engineering, Indeed.com

#spiceworldATX

Agenda

1. What is Docker and Why Do I Care?

2. Setting Up A Standalone Docker System

3. Understanding The Bells and Whistles

4. Use Cases
a. Standalone PiHole container
b. HTTP Web server with mounted directory
c. Deploy a LibreNMS Monitoring Suite on Linked Containers

5. Docker Swarm, Kubernetes, and Beyond

#spiceworldATX

In The Beginning...

Services
Physical
Servers

HTTP Server

Database Server

Email Server

DNS Server

DHCP Server

#spiceworldATX

…And Then Came VMware
Services Physical Servers

Virtual

Servers

HTTP
Server

Database
Server

Email
Server

DNS Server

DHCP
Server

#spiceworldATX

Docker: Like VMware,
But Without the Middleman

Services

Physical
Servers

HTTP
Server

Database
Server

Email
Server

DNS Server

DHCP
Server

#spiceworldATX

So, How Does It Work?
● Think of “containers” as Virtual Machines, each one is its own server

● Containers can be generated locally or pre-configured containers (images) can be
downloaded from the “docker hub”

● Each container uses the kernel of the host system to operate but is isolated from
everything else by default

● The container has a single purpose which it is assigned at
startup called an “entrypoint”

● Once complete it shuts down automatically, saving state.

#spiceworldATX

Networking for Docker Containers

● DEFAULT: Bridge (Docker creates a local
VLAN for containers, acts as router to
network)
○ Containers addressable by name

● Host (Container uses host network interface

directly)

● Isolated Network (Like bridge, but isolated

VLAN for specific containers)

#spiceworldATX

Benefits of Docker

Better Resource Usage

•Only install the packages you need, not the bloat

•Manage resources for specific containers

Infrastructure as Code

•Deploy containers in seconds with scripted deployment

•“Treat containers like cattle, not cats”

Improved Security

•Each container has its own sandbox

#spiceworldATX

Popular Docker Images
● Database Servers

○ Oracle Database

○ Couchbase

○ Mongo

○ Mariadb

○ Redis

○ Postgres

● Database Helpers
○ Oracle instant client

● Base OS Images
○ Alpine

○ Ubuntu

○ Fedora

○ RHEL

● Web Servers
○ Nginx

○ Apache

● Docker Helpers
○ Traefik

● Development Environments
○ Java 8

○ Python

○ Busybox

Setting Up a
Standalone

Docker System

#spiceworldATX

Why?
Consistent

development
environment

Easily configured
sandbox for

testing projects
and code

Clean and simple
way to run

different versions
of applications

(Python 2.7 versus
3.0)

#spiceworldATX

Installing
Docker

Sudo yum install docker [-y -q -e 0]

Sudo systemctl start docker

Sudo systemctl enable docker

#spiceworldATX

Making
Docker
Accessible
Without Sudo

Sudo groupadd docker

Sudo usermod -aG docker $user

[Log out and log back in]

#spiceworldATX

#spiceworldATX

Running Docker Containers
Docker Run versus Docker Compose

Docker run [image]
• Starts a single image / server

• Easy and good for standalone systems

• Start here!

Docker-compose up
• Orchestrate deploying multiple networks, containers and defining the links between them

• Requires a “dockerfile” called “docker-compose.yml” and installation of another tool

• We won’t be covering this in this “basic” overview - just know it exists!

#spiceworldATX

Make Sure Docker is Properly Configured

Understanding the Bells
and Whistles

#spiceworldATX

Basic Container Management
See running containers

Docker ps

Start a stopped container

Docker start [container]

Stop a started container

Docker stop [container]
Docker kill [container]

Delete a container

Docker rm [container]

Run a detached container

Docker run -d [container]

#spiceworldATX

Docker PS

#spiceworldATX

Fedora Cockpit

#spiceworldATX

Docker Run [arguments] [image name]

#spiceworldATX

Detached
By default, Docker will attach your
terminal to the terminal running within the
container you just started.

To enable a container to continue to run
“in the background” you will need to
“detach” the container from your
terminal.

-d

#spiceworldATX

Names
Naming docker containers make it easier
to manage and address.

Docker will randomly assign a two word
name to all unnamed containers.

--name testenv

#spiceworldATX

Environment
Variables

Most pre-configured docker containers will

accept environment variables

Environment variables tell the container things

like where to connect for database services, DNS

names to use, or other configurable variables

-env dns=docker.nickleghorn.com

#spiceworldATX

Publishing Ports
If you need your container to be available on the network as a service you can

“publish” (think “map”) a port from the docker network to the host network

REMEMBER: [host port]:[container port]

-p 8080:80

You can also specify an IP address to bind the port on

-p 10.128.1.224:8080:80

Default is to expose TCP. You can specify UDP as well.

-p 10.128.1.224:514:514/udp

#spiceworldATX

Mounting Directories

Want to have a folder on your host OS available to a container?

REMEMBER: [host directory]:[container directory]

-v /home/foghorn/website:/var/www/html

#spiceworldATX

Manual Container Operations
Copy a file FROM a container

Docker cp [container]:[/path/to/container/file] [/path/to/host/file]

Copy a file TO a container

Docker cp [/path/to/host/file] [container]:[/path/to/container/file]

Run a command in an existing container

Docker exec [container] [command]

#spiceworldATX

Get an Interactive Shell in a Container

Is the container already running?

Docker exec -it [container] /bin/bash

Do you need to start the container?

Docker run -it [container] /bin/bash

#spiceworldATX

Restart
conditions

When should the container be restarted?

Always!

--restart=always

If the container fails, maximum twice

--restart=on-failure:2

#spiceworldATX

Setting an Entrypoint

Most pre-built containers already have an entrypoint.

Docker run -d \
-v /test/:/usr/local/test/ \
--entrypoint /usr/local/test/start.sh \
fakecontainer

Use Case Examples

#spiceworldATX

Standalone PiHole Container / DNS Server

docker run -d \
--name pihole \
-p 53:53/tcp -p 53:53/udp \
-p 67:67/udp \
-p 80:80 \
-p 443:443 \
-e ServerIP="[INSERT IP HERE]" \
-e WEBPASSWORD="[SET A PASSWORD]" \
--restart=always \
--cap-add=NET_ADMIN \
--dns=127.0.0.1 --dns=1.1.1.1 \
pihole/pihole:latest

#spiceworldATX

HTTP Web Server with Mounted Directory

docker run -d \
--name webserver \
-p 127.0.0.1:8080:80\
-v /home/foghorn/website/:/usr/local/apache2/htdocs/ \
httpd:2.4

sudo chcon -Rt svirt_sandbox_file_t /home/foghorn/website

#spiceworldATX

LibreNMS
Deployment
on Linked
Containers

For extra homework and
hands-on testing:

https://github.com/foghorn/librenmsdocker

#spiceworldATX

Docker Swarm and
Kubernetes

#spiceworldATX

Docker is Just The Beginning
Docker just manages the containers on a single host

Docker swarm pools multiple servers to form shared
resources and manages the running of containers
within that “swarm”

Kubernetes is like docker swarm but with more control
over networking, load balancing, and other higher-level
functions

#spiceworldATX

Standalone Docker
Environment

Firewall
Load Balancer
Web Hosts
Database

#spiceworldATX

Kubernetes
Environment

Firewall
Load Balancer
Web Hosts
Database

#spiceworldATX

Kubernetes
Environment

Firewall
Load Balancer
Web Hosts
Database

#spiceworldATX

Review
Hopefully, you are leaving here today able to:

• Describe docker containers, their purpose, and how they operate

• Install docker on your local system

• Deploy and configure a docker container

• Understand the concept of Kubernetes and Docker Swarm

